\( \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\senq}{\mathop{\rm sen^2}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\tgq}{\mathop{\rm tg^2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

05/07/2017

Um inteiro às fatias


Problema: Seja $a_n=2-\displaystyle\frac{1}{n^2+\sqrt{n^4+\frac{1}{4}}}$, $n=1,2,...$ .
Mostre que $\sqrt{a_1}+\sqrt{a_2}+...+\sqrt{a_{119}}$ é um inteiro.

Problema proposto por Américo Tavares no facebook, no dia 4 de Julho de 2017.

Sem comentários:

Enviar um comentário