\( \newcommand{\nPr}[2]{{}^{#1}A_{#2} } \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\frc}[2]{\displaystyle\frac{#1}{#2}} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\ImP}{\mathop{\rm Im}} \newcommand{\ReP}{\mathop{\rm Re}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\cotg}{\mathop{\rm cotg}} \newcommand{\cosec}{\mathop{\rm cosec}} \newcommand{\cotgh}{\mathop{\rm cotgh}} \newcommand{\cosech}{\mathop{\rm cosech}} \newcommand{\sech}{\mathop{\rm sech}} \newcommand{\sh}{\mathop{\rm sh}} \newcommand{\ch}{\mathop{\rm ch}} \newcommand{\th}{\mathop{\rm th}} \newcommand{\senEL}[1]{\mathop{\rm sen}^{#1}} \newcommand{\tgEL}[1]{\mathop{\rm tg}^{#1}} \newcommand{\cotgEL}[1]{\mathop{\rm cotg}^{#1}} \newcommand{\cosecEL}{\mathop{\rm cosec}^{#1}} \newcommand{\shEL}[1]{\mathop{\rm sh^{#1}}} \newcommand{\chEL}[1]{\mathop{\rm ch^{#1}}} \newcommand{\thEL}[1]{\mathop{\rm th^{#1}}} \newcommand{\cotghEL}[1]{\mathop{\rm cotgh^{#1}}} \newcommand{\cosechEL}[1]{\mathop{\rm cosech^{#1}}} \newcommand{\sechEL}[1]{\mathop{\rm sech^{#1}}} \newcommand{\senq}{\senEL{2}} \newcommand{\tgq}{\tgEL{2}} \newcommand{\cotgq}{\cotgEL{2}} \newcommand{\cosecq}{\cosecEL{2}} \newcommand{\cotghq}{\cotghEL{2}} \newcommand{\cosechq}{\cosechEL{2}} \newcommand{\sechq}{\sechEL{2}} \newcommand{\shq}{\shEL{2}} \newcommand{\chq}{\chEL{2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\argsh}{\mathop{\rm argsh}} \newcommand{\argch}{\mathop{\rm argch}} \newcommand{\Var}{\mathop{\rm Var}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\C}{\mathbb{C}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\I}{\mathbb{I}} \newcommand{\N}{\mathbb{N}} \newcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\til}{\sim} \newcommand{\mdc}{\mathop{\rm m.d.c.}} \newcommand{\mmc}{\mathop{\rm m.m.c.}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\dfrc}{\displaystyle\frac} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

23/09/2017

As primitivas da secante hiperbólica

Exercício:
Determine uma expressão para \[ \int {\sech x} dx\]
\[\arcsen \left(\th x\right) +C_1\] ou \[2\arctg{\left(e^x\right)}+C_2 \] ou \[\arctg{\left(\sh x\right)}+C_3 \] ou \[2\arctg \left[\th \left(\displaystyle\frac{x}{2}\right)\right] + C_4\]

\begin{eqnarray*} \int {\sech x} dx & = & \int {\displaystyle\frac{\sechq x}{\sech x}} dx \\ & = & \int {\displaystyle\frac{ (\th x)' }{\sqrt{\sechq x} } }dx \\ & = & \int {\displaystyle\frac{ (\th x)' }{\sqrt{1- \thEL{2} x} } }dx\\ & = & \arcsen \left(\th x\right) + C_1 \end{eqnarray*}


\begin{eqnarray*} \int {\sech x} dx & = & \int {\displaystyle\frac{2}{e^x+e^{-x}}} dx \\ & = & \int {\displaystyle\frac{ 2e^x }{\left(e^x\right)^2+1 } }dx \\ & = & 2\arctg{\left(e^x\right)}+C_2 \end{eqnarray*}
Ver http://ftp.ist.utl.pt/GAEL/math/integrals/more/sech.htm


\begin{eqnarray*} \int {\sech x} dx & = & \int {\displaystyle\frac{1}{\ch x} dx} \\ & = & \int {\displaystyle\frac{\ch x }{\chEL{2}x }dx} \\ & = & \int {\displaystyle\frac{\ch x }{\shEL{2}x+1 }dx}\\ & = & \arctg\left(\sh x\right)+C_3 \end{eqnarray*}
Ver http://ftp.ist.utl.pt/GAEL/math/integrals/tableof.htm


Pode-se proceder de forma análoga ao que se fez para a secante trigonométrica
Calculemos as primitivas da função secante hiperbólica, recorrendo à substituição \[t = \th \left(\displaystyle\frac{x}{2}\right)\]. Recorde-se que \[ \ch x = \displaystyle\frac{{1 + t^2 }}{{1 - t^2 }} \] e \[ \sh x = \displaystyle\frac{{2t}}{{1 - t^2 }} \] E portanto \begin{eqnarray*} \int {\sech x} dx & = & \int {\displaystyle\frac{1}{\ch x}} dx \\ & = & \int {\displaystyle\frac{1 - t^2 }{1 + t^2 } \times \displaystyle\frac{2}{1 - t^2 }}dt \\ & = & \int{\displaystyle\frac{2}{1 + t^2} } dt\\ & = & 2\arctg t + C_4\\ & = & 2\arctg \left[\th \left(\displaystyle\frac{x}{2}\right)\right] + C_4 \end{eqnarray*} Resultado curioso...
Note-se que \[\left(\sech x\right)'=-\th x \sech x\] e \[\left(\th x\right)'=\sechq x\]. Portanto, multiplicar e dividir por $\th x + \sech x$ não nos conduz a algo como o simpático resultado que temos para a secante trigonométrica...

Sem comentários:

Enviar um comentário