\( \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\senq}{\mathop{\rm sen^2}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\tgq}{\mathop{\rm tg^2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

27/03/2017

Um integral engraçado.

Já vi outras resoluções para isto. Vou apresentar a minha.
Problema: \[\int_{0}^{\pi} \sin x \ln {\cot \left( \frac{x}{2} \right)} dx \]
Possível resolução:
Vou começar por reescrever o integral na forma \[\int_{0}^{\pi} \sin x \ln \sqrt{ \frac{1+\cos (x)}{1-\cos(x)} } dx \] Depois faço a substituição $t=x+\frac{\pi}{2}$ obtendo \[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \ln \sqrt{ \frac{1+\sin (t)}{1-\sin (t)} } dt.\] Como a função integranda é ímpar, então, no intervalo $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ o integral vale zero.


PS:
Apresento abaixo o integral inicial, calculado numericamente numa CASIO CG20 (utilizando apenas a funções da calculadora, sem recorrer a programação...)

Sem comentários:

Enviar um comentário